首页
欢迎拨打电话咨询
代理品牌
欢迎拨打电话咨询
服务支持
欢迎拨打电话咨询
新闻中心
欢迎拨打电话咨询
联系我们
欢迎拨打电话咨询
PURECUBE NI-NTA AGAROSE NI-NTA
首页 代理品牌 Cube Biotech HIS标签 NI-NTA
PureCube Ni-NTA Agarose
产品简介
产品优势
产品详情
产品参数
相关参数
参考文献
产品简介
PureCube Ni-NTA Agarose

PureCube His Affinity Agarose (NTA)是针对组氨酸标签的亲和层析产品,组氨酸标签是应用广泛的亲和层析标签,这种标签具有小尺寸、低免疫原性的特点和在多种天然或变性条件下的广泛适用性,NTA相对于IDA具有更高的洗脱液纯度。

产品优势

(1)、德国制造,品质与信誉的坚实保障;

(2)、结合载量可高达80mg/mL,目前市面上非常高的结合能力;
(3)、更优越的DTT和EDTA稳定性和耐受性;
(4)、凝胶的多孔性和均匀粒径,使蛋白与凝胶之间有很好地相互作用;
(5)、适合低压环境下的纯化过程(大规模纯化制备或预装柱均可使用);
(6)、为研发、生产降低成本;
(7)、适用于大肠杆菌和真核细胞的裂解液和上清液;
(8)、同时可装载Co, Cu, Zn和其它金属离子。
产品详情

1. 收率高,纯度高


Fig. 1: Over 20% more yield obtained with PureCube Ni-NTA Agarose. SDS-PAGE of GFP expressed in E. coli and purified in gravity columns with PureCube Ni-NTA Agarose and Ni-NTA resin from Competitor Q. 80 mg/mL protein yield was obtained with PureCube Ni-NTA Agarose (E1–E4, Cube) compared to 65 and 48 mg/mL, respectively, with the widely used alternative resins G and Q (E1–E4, Competitor G / Competitor Q).


 

Cube Biotech

蛋白结合能力

≤80mg/mL



2. 优越的DTT和EDTA稳定性


Fig. 2: NTA is robust in the presence of reducing and chelating agents. GFP-His was purified on gravity columns containing PureCube Ni-NTA Agarose after exposing the resin for 1 h to 3 concentrations of DTT or EDTA. NTA exhibits a shallow decay rate in binding capacity.


PureCube Ni-NTA琼脂糖在DTT和EDTA存在下非常坚实,在稳定性测试中,将PureCube Ni-NTA琼脂糖置于DTT与EDTA浓度逐渐升高的环境中处理1小时。再用处理过的凝胶在重力层析柱中纯化大肠杆菌表达的GFP-His,凝胶的蛋白结合能力因存在DTT与EDTA而下降,但是衰减率平缓,即使在1.5 mM EDTA,凝胶依然具有其结合能力的54%。


 

Cube Biotech

DTT稳定性

<10mM

EDTA稳定性

<1.5mM

产品参数

应用

Specific binding and purification of 6x his-tagged proteins

特异性

Affinity to His-tagged proteins

结合能力

>80 mg/mL

Bead Ligand

Ni-NTA

粒径大小

40 μm

蝥合剂稳定性

Stable in buffer containing 10 mM DTT and 1 mM EDTA

保存

Delivered as a 50 % suspension

所需试剂耗材

Lysis Buffer Wash Buffer 

Elution Buffer 

Ice bath 

Refrigerated centrifuge for 50 mL tube (min 10,000 x g) 

50 mL centrifuge tube 

Micropipettor and Micropipetting tips

Disposable gravity flow columns with capped bottom outlet, 2 ml

pH meter

End-over-end shaker


SDS-PAGE buffers, reagents and equipment Optional: Western Blot reagents and equipment


相关参数

货号

产品

粒径

μm)

结合

载量

运输

温度

储存

温度

应用

31101

PureCube Ni-NTA Agarose(1ml)

40

80mg/mL

室温

4° C

适用于 His 标签重组蛋白的纯化 , 超高蛋白结合载量。pH 稳定工作范围2-14, 最大流速为6mL/min。 在10mM DTT 和1mM EDTA的环境下保持稳定

 

31103

PureCube Ni-NTA Agarose(10ml)

40

80mg/mL

室温

4° C

31105

PureCube Ni-NTA Agarose(50ml)

40

80mg/mL

室温

4° C

31110

PureCube Ni-NTA Agarose(250ml)

40

80mg/mL

室温

4° C

31112

PureCube Ni-NTA Agarose(500ml)

40

80mg/mL

室温

4° C

31115

PureCube Ni-NTA Agarose(1000ml)

40

80mg/mL

室温

4° C

31120

PureCube Ni-NTA Agarose(5000ml)

40

80mg/mL

室温

4° C



如需咨询或订购
请拨打 400-9910-165 / 028-85568133
或添加微信 zenmindes-sale


中国独家总代理:

成都正民德思生物科技有限公司

www.zenmindes.com


咨询
参考文献

Stressler, T., Ewert, J., Merz, M., Funk, J., Claaßen, W., Lutz-Wahl, S., & Fischer, L.

PLOS ONE

Wang, Xiaoliang, et al.

ChemBioChem 19.10 (2018): 1044-1048

Volkov, Oleksandr, et al.

Science 358.6366 (2017): eaan8862

Li, Hai-Chao, et al.

Catalysts 7.9 (2017): 277

Rues, Ralf-Bernhardt, et al.

Heterologous Expression of Membrane Proteins. Humana Press, New York, NY, 2016. 1-21

Hsieh, Yi-Lin, et al.

Plant molecular biology reporter 34.2 (2016): 387-398

Stressler, Timo, et al.

Applied microbiology and biotechnology102.6 (2018): 2709-2721

Ewert, Jacob, et al.

Enzyme and microbial technology 110 (2018): 69-78

Moritzer, Ann-Christin, et al.

Journal of Biological Chemistry. 294. jbc.RA118.005393. 10.1074/jbc.RA118.005393

Worm D, et al.

Protein Expression and Purification Volume 164, December 2019, 105479 DOI: 10.1016/j.pep.2019.105479

Matys, S et al.

Journal of Environmental Chemical Engineering. 103606. 10.1016/j.jece.2019.103606

Coscolín, Cristina et al.

Applied Catalysis A: General. 565. 10.1016/j.apcata.2018.08.003

Bauer, Westley S et al.

The Analyst vol. 142,9 (2017): 1569-1580. doi:10.1039/c7an00278e

Scherr, Thomas et al.

Anal. Methods. 8. 10.1039/C6AY01636G

Ewert, J. et al.

Enzyme and Microbial Technology. 110. 10.1016/j.enzmictec.2017.10.002

Stressler, T. et al

Applied Microbiology and Biotechnology. 102. 10.1007/s00253-018-8828-5

Yang, M. et al.

Applied Microbiology and Biotechnology. 103. 10.1007/s00253-018-9502-7

Wag et al.

Biosensors and Bioelectronics. 153. doi.org/10.1016/j.bios.2020.112048

Kovalev, K. et al.

Proceedings of the National Academy of Sciences. 117. 201915888. 10.1073/pnas.1915888117

Mayerthaler F. et al.

RSC Chem. Biol., 2021, Advance Article doi.org/10.1039/D0CB00220H

Zabelskii, D. et al.

Commun Biol 4, 821 (2021). https://doi.org/10.1038/s42003-021-02326-4

Huang, C.-J.; Narasimha, G.V.; Chen, Y.-C.; Chen, J.-K.; Dong, G.-C

Biosensors 2021, 11, 219. https://doi.org/10.3390/bios11070219

Xue et al.

promotes microglial phagocytosis to protect against ischemic brain injury 2021 https://doi.org/10.1016/j.apsb.2021.10.012

Kolářová, L., et al.

The FEBS Journal. Accepted Author Manuscript. https://doi.org/10.1111/febs.16300

Haixia Zhou, et al

Nucleic Acids Research, 2021;, gkab1174, https://doi.org/10.1093/nar/gkab1174

Maruszczak et al.

42.BioRxiV pre-print Server https://doi.org/10.1101/2022.01.13.476189

Drwesh L. et al.

BioRxiV pre-print Server https://www.biorxiv.org/content/10.1101/2022.02.15.480587v1

Greve Veronica Teresa Ober et al.

PhD Thesis, University of Munich